A novel quantitative cross-validation of different cortical surface reconstruction algorithms using MRI phantom.
نویسندگان
چکیده
Cortical surface reconstruction is important for functional brain mapping and morphometric analysis of the brain cortex. Several methods have been developed for the faithful reconstruction of surface models which represent the true cortical surface in both geometry and topology. However, there has been no explicit comparison study among those methods because each method has its own procedures, file formats, coordinate systems, and use of the reconstructed surface. There has also been no explicit evaluation method except visual inspection to validate the whole-cortical surface models quantitatively. In this study, we presented a novel phantom-based validation method of the cortical surface reconstruction algorithm and quantitatively cross-validated the three most prominent cortical surface reconstruction algorithms which are used in Freesurfer, BrainVISA, and CLASP, respectively. The validation included geometrical accuracy and mesh characteristics such as Euler number, fractal dimension (FD), total surface area, and local density of points. CLASP showed the best geometric/topologic accuracy and mesh characteristics such as FD and total surface area compared to Freesurfer and BrainVISA. In the validation of local density of points, Freesurfer and BrainVISA showed more even distribution of points on the cortical surface compared to CLASP.
منابع مشابه
A New Approach for Quantitative Evaluation of Reconstruction Algorithms in SPECT
ABTRACT Background: In nuclear medicine, phantoms are mainly used to evaluate the overall performance of the imaging systems and practically there is no phantom exclusively designed for the evaluation of the software performance. In this study the Hoffman brain phantom was used for quantitative evaluation of reconstruction techniques. The phantom is modified to acquire t...
متن کاملDevelopment and Evaluation of Image Reconstruction Algorithms for a Novel Desktop SPECT System
Objective (s): Various iterative reconstruction algorithms in nuclear medicine have been introduced in the last three decades. For each new imaging system, it is wise to select appropriate image reconstruction algorithms and evaluate their performance. In this study, three approaches of image reconstruction were developed for a novel desktop open-gantry SPECT system, PERSPECT, to assess their p...
متن کاملThe influence of using different reconstruction algorithms on sensitivity of quantitative 18F-FDG-PET volumetric measures to background activity variation
Introduction: This study aims to investigate the influence of background activity variation on image quantification in differently reconstructed PET/CT images. Methods: Measurements were performed on a Discovery-690 PET/CT scanner using a custom-built NEMA-like phantom. A background activity level of 5.3 and 2.6 kBq/ml 18F-FDG were applied. Ima...
متن کاملA multi-structural Fiber Crossing Anisotropic Diffusion Phantom for HARDI reconstruction techniques validation
Introduction There is significant interest in evaluating the performance and reliability of white matter fiber tractography algorithms. Diffusion tensor imaging (DTI) approach [1] is a powerful tool for non-invasive investigation of microstructure and has been successfully applied to detect different white matter diseases [2]. DTI-based fiber tracking gives insights into the complex architectur...
متن کاملUltra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU
Digital Breast Tomosynthesis (DBT) is a technology that creates three dimensional (3D) images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study u...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 31 2 شماره
صفحات -
تاریخ انتشار 2006